The Kinetic Isotope Effect on Proton Transfer from *p*-Nitrophenol to Imidazole

Yvonne Chiang,^a A. Jerry Kresge,^{*a} and Joseph F. Holzwarth^b

^a Department of Chemistry, University of Toronto, Scarborough College, West Hill, Ontario M1C 1A4, Canada ^b Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4–6, Berlin 33, W. Germany

The kinetic isotope effect on direct proton transfer from *p*-nitrophenol to imidazole in aqueous solution at 25 °C was found to be $k_{\rm H}/k_{\rm D} = 2.8 \pm 0.3$, in good agreement with maximum isotope effects measured previously for proton transfer between normal acid–base centres in more complex systems.

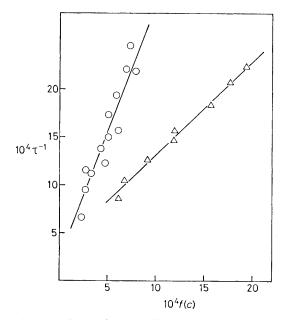
Proton transfer between normal¹ acid-base centres is generally very fast, and this reaction is therefore commonly regarded as being a diffusion-controlled process, *i.e.* one in which encounter of reactants, equation (1), or separation of products, equation (3), rather than proton transfer itself, equation (2), is rate-determining. The recent discovery of primary kinetic isotope effects on this process,² however,

 $\mathbf{B} + \mathbf{H}\mathbf{A} \rightleftharpoons \mathbf{B} \cdot \mathbf{H}\mathbf{A} \tag{1}$

$$\mathbf{B} \cdot \mathbf{H} \mathbf{A} \rightleftharpoons \mathbf{B} \mathbf{H} \cdot \mathbf{A} \tag{2}$$

$$\mathbf{BH} \cdot \mathbf{A} \rightleftharpoons \mathbf{BH} + \mathbf{A} \tag{3}$$

showed that the proton transfer step can in fact be at least partly rate-determining when the acid and base strengths of the proton donor and proton acceptor are closely matched in the region near $\Delta pK = 0$ [$\Delta pK = pK_a$ (donor) – pK_a (acceptor)]. These isotope effects were found in complex systems where proton transfer follows a strongly endoergonic pre-equilibrium; consequently their interpretation, though not in doubt, is nevertheless not straightforward. We report that we have now observed an isotope effect on direct proton transfer between a simple normal acid-base pair which is in remarkably good agreement with these earlier results.


We made the present measurements by the temperaturejump method with *p*-nitrophenol, $pK_a = 7.16^3$ as the proton donor, HA, and imidazole, conjugate acid $pK_a = 6.99^4$ as the proton acceptor, B. This gave us an acid-base pair with $\Delta pK ca.$ zero† and also enabled us to work at pH = 7 where contributions to observed relaxation times, τ , from proton transfer through protolysis and hydrolysis reaction pathways are at a minimum.⁵ Under these conditions, τ is a simple function of forward and reverse rate constants, k_f and k_r , plus reactant concentrations, equation (5), which, since $k_f/k_r = K$ and K is known, can be recast in terms of just one rate constant and a function of concentrations f(c).

$$HA + B \rightleftharpoons_{k_{r}}^{k_{f}} A^{-} + HB^{+}$$
(4)

$$\tau^{-1} = k_{\rm f}([{\rm HA}] + [{\rm B}]) + k_{\rm r}([{\rm A}^-] + [{\rm HB}^+]) = k_{\rm f}([{\rm HA}] + [{\rm B}]) + ([{\rm A}^-] + [{\rm HB}^+])/K = k_{\rm f}f(c) \quad (5)$$

We monitored the reaction spectrophotometrically, using the absorption maximum of the *p*-nitrophenolate ion at 395 nm, and measured τ for series of solutions with approximately constant concentrations of *p*-nitrophenol, *p*-nitrophenolate, and hydrogen ion but varying imidazole and imidazolium ion concentrations. The results, displayed in Figure 1, show that τ^{-1} is the expected linear function of f(c); least squares analysis gave $k_{\rm f}({\rm H_2O}) = (2.71 \pm 0.29) \times$ $10^8 \, {\rm dm^3 \, mol^{-1} \, s^{-1}}$ and $k_{\rm f}({\rm D_2O}) = (0.98 \pm 0.04) \times 10^8$

[†] This is true in D_2O as well as in H_2O and the equilibrium isotope effect on the overall reaction [equation (4)] is only $K(H_2O)/K(D_2O)=1.23$; the kinetic isotope effect measured can therefore have little (if any) equilibrium component.

Figure 1. Dependence of τ upon f(c) for the reaction of *p*-nitrophenol with imidazole in aqueous solution at 25 °C and ionic strength = 0.10 mol dm⁻³; circles: H₂O, triangles: D₂O.

dm³ mol⁻¹ s⁻¹. These determinations were made with our laser T-jump apparatus operating in the slow mode.⁶ We also carried out some measurements with the apparatus in the fast mode⁶ using a single more concentrated solution (H₂O) for which $f(c) = 97 \times 10^{-4}$ mol dm⁻³; this gave $\tau = 3.7 \times 10^{-7}$ s, in excellent agreement with $\tau = 3.6 \times 10^{-7}$ s obtained by extrapolating the results of the measurements at lower concentrations.

These data give the isotope effect $k_{\rm II}/k_{\rm D} = 2.8 \pm 0.3$. This agrees very well with $k_{\rm II}/k_{\rm D} = 2.8$, the maximum isotope effect observed at $\Delta pK = 0$ for proton transfer between normal acid-base centres following a pre-equilibrium step in the reaction of methoxyamine with *p*-methoxybenzaldehyde,^{2a} and it is also nicely consistent with the maximum isotope effect, $k_{\rm II}/k_{\rm D} = 2.5$, found for a similar situation in the hydroxy-aminolysis of benzhydrylidenedimethylammonium ion.^{2c} In both of these reactions, proton transfer occurs by the encounter, transfer, and separation sequence of equations (1)--(3). On the other hand, in the only other pre-equilibrium system examined so far, the methoxyaminolysis of phenyl acetate, a preassociation mechanism operates and the maximum isotope effect is somewhat greater, $k_{\rm H}/k_{\rm D} = 3.8.^{2b}$

We are grateful to the Natural Sciences and Engineering Research Council of Canada, the Donors of the Petroleum Research Fund administered by the American Chemical Society, and the Max-Planck-Gesellschaft for their financial support of this work.

Received, 26th July 1982; Com. 873

References

- 1 M. Eigen, Angew. Chem., Int. Ed. Engl., 1964, 3, 1.
- 2 (a) N. A. Bergman, Y. Chiang, and A. J. Kresge, J. Am. Chem. Soc., 1978, 100, 5954; (b) M. M. Cox and W. P. Jencks, *ibid.*, p. 5957; *ibid.*, 1981, 103, 572; (c) H. Fischer, F. X. DeCandis, S. D. Ogden, and W. P. Jencks, *ibid.*, 1980, 102, 1340.
- 3 G. F. Allen, R. A. Robinson, and V. E. Bower, J. Phys. Chem., 1962, 66, 171.
- 4 S. P. Datta and A. K. Grybowski, J. Chem. Soc. B, 1966, 136.
- 5 C. F. Bernasconi, 'Relaxation Kinetics,' Academic Press, New York, 1976, p. 56.
- 6 J. F. Holzwarth, A. Schmidt, H. Wolff, and R. Volk, J. Phys. Chem., 1977, 81, 2300; J. F. Holzwarth in 'Techniques and Applications of Fast Reactions in Solution,' eds. W. J. Gettins and E. Wyn-Jones, D. Reidel Publ. Co., Boston, 1979, p. 47.